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ABSTRACT 
This paper discusses a computerized algorithm to derive the formula for the likelihood ratio for a 

kinship problem with  any arbitrarily defined relationships based on genetic evidence. The ordinary 
paternity case  with the familiar likelihood formula l/pq is the commonest example. More generally, any 
miscellaneous collection of people can be  genetically tested to help settle some argument  about how 
they are  related, what one might call a “kinship” case.  Examples that geneticists and DNA identification 
laboratories run into include sibship, incest, twin, inheritance, motherless, and corpse identification 
cases. The strength of the genetic evidence is  always described by a likelihood ratio. The general method 
is described by which the  computer program finds the formulas appropriate to these various situations. 
The benefits and the interest of the program are discussed using many examples, including analyses 
that have  previously been published, some practical problems, and simple and useful rules for dealing 
with scenarios in which ancestral or fraternal types substitute for those of the alleged father. 

A computer  program, called the Kinship Program, 
calculates symbolic likelihood ratios, based on ge- 

netic evidence, for  a  general class  of problems of  which 
the ordinary paternity trio problem is the prototype. 
Examples include  the following: 

motherless case: Is this man the  father of this child, 
based on genetic types from just the two of them? 

incest case: Do the genetic types suggest that two peo- 
ple are doubly related? 

sibling p o b h s :  Are two given people full siblings? 
half-siblings? unrelated? 

inheritance  poblem: Are two people related as claimed? 
twin problem: Are two siblings  (whose parents  are not 

tested) identical twins? 
cmpse  identzjication: Is this corpse the same person who 

was reported missing by some family? 
The inspiration for  the Kinship Program was an ear- 

lier program developed by IHM (1975) and CONRADT 
(1983) that gives numerical answers to such problems. 
The novelty offered by the  current  program is that it 
produces explicit algebraic formulas. Naturally, once 
the  formula is obtained  a  numeric answer can quickly 
and trivially be computed, so the  formula is clearly  as 
good as a  number.  In  addition,  the  formula is a power- 
ful tool that provides such advantages as  verifiability, 
insight, and modeling. 

In principle the formula may be an arbitrarily compli- 
cated rational function,  a ratio of  polynomials  in the 
allele frequencies, and the time to derive it arbitrarily 
long  depending on the complexity of the  problem. 
However, the satisfymg fact is that  formula complexity 
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grows  only slowly  with the complexity of the problem. 
All practical problems that have arisen required only 
seconds on  an ordinary desktop computer, and even 
more fanciful problems took at most a few minutes. 

Background, paternity trios: As a  foundation  for  the 
principles of analysis for  the general case, we begin by 
reviewing the most familiar situation: the paternity test 
with mother, child, and  an alleged father (whose pater- 
nity is to be decided) in a collection of genetic systems. 
Suppose that in some codominant system, such as a 
DNA test, the  mother has genotype rp, child pq, and 
alleged father qs. 

Let p,  q, . . . represent  the allelic frequencies corre- 
sponding to the alleles p ,  q, . . . , so that 2rp is the 
proportion of rp individuals in the  population for exam- 
ple.’ Then 2rp2qs is the  proportion of rp, qs woman- 
man couples, and since ’/2 - ‘/2 of such a couple’s chil- 
dren  are pq, the  chance  that  a  mother + child + father 
trio (“true  trio”) would  have  types rp, pq, qs is 2rp2qs. 
1/2 ‘/2. That is, 

X = Atypes as observed I true trio] = 2 9 2 q s -  % - %. 
On the other  hand,  the  chance  that  a “false trio” 
(woman + child + unrelated  man) would  have such 
types  is 

Y = qtypes so observed 1 false trio] = 292qs -  %q, 

so the likelihood ratio X / Y  = 1/2q, which is  well known 

The above  analysis  is idealized: the possibilities  of 
mutation and of laboratory error are not included. 
Hardy-Weinberg equilibrium is not  an essential assump 

(WALKER 1983). 

Nonstandard  typography is necessitated to distinguish numeric 
variables from genes. 
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FIGURE 1.-The paternity problem posed as pedigrees. 

tion for the simple trio situation above, although it  will 
be assumed in the  more general situations that follow. 
In the analysis the likelihoods X and Y could alterna- 
tively and equivalently have been defined with  types  of 
mother,  man,  and even mother’s  contribution as part 
of the  conditions  rather  than  included in the hypothe- 
ses,  as here.  The  present  point of  view lends itself more 
readily to generalization however, so serves better as a 
model for what  follows. 

Pedigrees: To recapitulate, the ordinary paternity 
problem consists  of comparing  the two possible pat- 
terns of relatedness depicted in Figure 1. Some scien- 
tific evidence E, namely genetic types  of the individuals 
involved, is determined. To assess the weight  of the 
evidence E it is necessary and sufficient to evaluate the 
ratio X/  Y,  where X = P(El paternity} and Y = P(E1 non- 
paternity} (EDWARDS 1972). 

Once  the paternity problem is cast  in this abstract 
way, clearly  many generalizations of it can be solved  in 
the same way. Instead of the specific relationships Ho 
and HI of Figure 1 ,  an arbitrary pair of “pedigrees,” 
each of  which may be a family tree or trees, may be 
compared. 

Two grandparents cme: The example shown  in  Figure 2 
presents no new complications compared to the paternity 
case. One can  write  down by inspection that X = P(E1 Ho) 
= 2p2qr2st * ‘/* * where 2p2qr2st represents the proba- 
bility that the three independent ancestors would  have 
types as shown; and represent the probabilities  of 
p and g filtering down  to the child from the maternal 
and paternal sides,  respectively.  Similarly, Y = f i E 1  HI} = 
2p2qr2st. I / * *  q. where q is the chance that a random 
sperm will have the allele g. Therefore X /  Y = 

One grandfinrent caw: The last  case was simple in  hav- 
ing only one possible origin for each of the child’s 
alleles. The general situation is more complicated be- 
cause there may be several combinations to consider. 

n, ~ ~ n - ~ a ~ t y  

FIGURE 2.-Putative grandparents tested instead of man. 

FIGURE 3.-One putative grandparent tested instead of 
man. 

Figure 3 is like Figure 2 but the putative grandfather 
was not tested. Computation of X therefore  requires 
considering two ways to transmit a g allele from the 
paternal lineage: I/4 that  the putative grandmother pas- 
ses her g to the  child, plus q -  ’/* that  the putative grand- 
father  produces a g sperm, which subsequently passes 
to  the  child.  Thus X /  Y = + q /2 ) /q .  

Paternal ancestors: Rewriting the  preceding results 
as  averages leads to  an  interesting observation. For the 
two grandparents case, note  that X / Y  = ( I /2q  + 0 ) / 2 ;  
for one  grandparent, X / Y  = + 1 ) / 2 .  The various 
terms in the  numerators  can be recognized as paternity 
indices corresponding to the types  of the various al- 
leged grandparents,  that is, interpret 0, and l as 
the paternity indices when a qr person, an st person, 
or an untyped person, respectively, are evaluated as a 
possible father. Both as a preliminary to the  general 
method  and  for its independent interest, it is worth- 
while exploring  the  rule suggested by these examples. 

Paternal anmtm rule: Suppose that a paternity  problem 
involves no double relationships, and the genetic informa- 
tion  available for a man  consists of genetic types for some 
of  his direct ancestors. Then his  paternity index in  each 
genetic system  is the average  of the paternity  indices  come- 
sponding to the types  of  his parents.  Moreover,  this  rule 
can be iterated through previous generations. 

To prove  this rule, let g, h, . . . be the various  alleles at 
some  locus.  For an adult k define the vector of transmission 
pobabi&?s T k (  - ), where Tk(g) is the probability for person 
k to  pass  allele g to an offspring given the types known for 
k and/or h‘s ancestors. If there is no information about 
the genetic types, Tk(g) = I$ the frequency  in nature of 
the allele g. If the genotype is known, then each Tk(g) is 
0, or 1. 

Using  this  notation the paternity index can be repre- 
sented as follows. Let T (  * ) and T k (  * ) be the transmission 
probability  vectors corresponding to mother and to an 
alleged father k .  Let C be the set of genotypes  consistent 
with the phenotype of the child, so that gh E C means 
that the gh genotype gives the child’s  phenotype. We can 
say 

and Y = C,,,T(g)h. Then Lk = xk /Y  is the paternity 
index  for person k.  

Now define m ( k )  to be  the  mother of an untyped 
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person k, andflk) to be  the  father.  Under many circum- 
stances the  condition 

T k ( ' )  = 
T f l k )  ( ' ) + T m ( k )  ( . ) 

0 
L 

holds, which we will refer  to as condition S. For exam- 
ple, S is  always true  for a  codominant system. For a 
multilocus system or  one with silent alleles, like Rh, S 
still holds  provided k's ancestors  are  unrelated, as does 

Assume condition Sand assume that  the  mother and 
(1). 

the man k are  unrelated.  Then 

Lk = x , / y =  [ 2 c r ( g ) T k ( h ) ] / Y  

=[ ghE c C .(g) (Tflf(k)(h) + Tm(k) (h ) ) /2 ] /Y  

= [.& T(g)Tflk)(h) + gh€ c c T(g)Tm(k)(h)] / (eY)  

=[ ( &€ c c T(g)Tflki(h)) /Y 

+ (zc T(g)Tm(k) (h ) ) /Y ] /2 ,  

2. e., 

Lk = [Lm(k) + Lflk)l/2, (2) 

which is the  paternal ancestors rule. 
Clearly the principle can be extended back through 

additional generations. For example, if the  mother, 
m( m(k)  ), of m(k)  , is typed in her stead,  then 

Lm(m(k)) + 1 
2 + LAk) 

Lk = 
2 

Here we have used that fact that, since flm( k )  ) is un- 

The condition Sand therefore  the  paternal ancestors 
rule is rather  general in its applicability. The  mother 
may be typed or not; it works  equally  well in either 
case, so long as there exists a ~ ( g )  giving an  adequate 
description of the  mother's genetic contribution.  It is 
not limited to single locus codominant systems, but is 
often also  valid for systems  of haplotypes such as the 
Rh system.  However, it does not apply to a  compound 
system defined by simultaneously considering the vari- 
ous combinations from two independent loci. There- 
fore, Formula 2 has to be applied one locus at  a time. 
Thus,  the  paternal ancestors rule applies to HLA-AB 
only to the  extent  that recombination is ignored. 

Avuncular indices: It is worth comparing  the simple 
situation of paternal ancestors just discussed  with the 
more complex possibility that  a sibling b of the alleged 

typed, Lflrn(k)) = 1. 

father k is tested. That is, suppose we want to calculate 
the paternity index, Lk, of k by virtue of testing k's 
brother b. Equivalently, we can say that we are testing 
the  brother b for uncle-hood. Consequently the term 
avuncuZar  index was proposed (MORRIS et al. 1988) for 
the likelihood ratio Lk in such a case.2 

Avuncular index rule: In a system for which genetic 
types are available for child, alleged uncle band  perhaps 
the mother,  but  not for b's brother k, and Lb is the 
paternity index  for 6, the avuncular index Lk is 

Lk = (Lb f 1 ) / 2 .  (3) 

In particular, in  systems that exclude b from paternity 
his avuncular index is I/*, and in  systems where the 
paternity index is large, as a rule of thumb, the avuncu- 
lar index is about half as large. 

To derive ( 3 ) ,  consider the genotypes of b's parents. 
Label the  parents' allelles pr and qs (not necessarily 
distinct),  and say b received  alleles pq. Let T ~ (  * ) and 
T k (  * ) be conditional transmission probabilities vectors 
for b and k conditioned on the known phenotype of b. 
Now, Tb(g) = 4 p  is a gl/2 + 4 q  is a &/2. Each  of p, 
q, r, or s has probability 1/4 to be transmitted by k, so 

Tk(g) = -&4p is gl + 4 q  is gl + fir is gl + 4 s  is g]) 
1 

1 
4 = -(27*(g) + 270(g)), 

where T O (  e ) :  .rO(g) = g is the transmission vector of 
nature, which is to say of a  random person. That is, 

T k ( ' )  = 2 T b (  * ) + T o (  * ) 

Since L = 1,  ( 3 )  can now be derived in the same way 
as (2). 

Cases can arise where the above rules can be com- 
bined. For example, suppose that  a man is tested and 
has a paternity index of L in some system.  Since  his 
avuncular index is ( L  + 1)/2, it follows by the  paternal 
ancestors rule  that  the paternity index  for his untested 
nephew is ( ( L  + 1 ) / 2  + 1)/2.  

General  problem: However, it is certainly not always 
true  that  the transmission probabilities are  an  adequate 
substitute for genetic types. A situation wherein the 
method is inadequate is an untyped man with three 
children. Considering only  his  transmission probabil- 
ites  seems to permit him to contribute  a different allele 
to each one,  but  that is absurd.  Hence at best the trans- 
mission probability approach is limited to analysis of 
single gametic events. Also, there does not  appear to 
be a simple analogue of ( 3 )  corresponding to the case 

2 In Latin,  unfortunately, avunculus means  maternal  uncle (RON 
GARNER, personal communication),  but since there is no word in 
English derived from patrum (paternal  uncle), avuncular index seems 
to withstand pedantic scrutiny. 
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of multiple typed  siblings b, c, . . . of an alleged father 
k. This situation is discussed further below. 

Consequently, to deal with arbitrary kinship prob- 
lems, a dynamic combinatorial approach is necessary. 
In  the worst  case it is necessary to  explore a tree whose 
nodes correspond  to all the  different possible combina- 
tions of genotypes that all the people may have. The 
next section describes an algorithm, called the Kinship 
Program, that explores the  tree. 

THE KINSHIP PROGRAh4 

The kernel of the program is a recursive subroutine 
that calculates Xor Y, i.e., calculates a likelihood P(El H), 
where His a pedigree describing the hypothesized rela- 
tionships and E is the known phenotypes. The recursion 
iterates per  person, from oldest to youngest. At each 
recursive  level the program loops through  the possible 
genotypes for the  person, and the probabilities corre- 
sponding  to each of these subcases are  added. 

Notation: To make the explanation more explicit, 
further  notation is needed. 

People and relationships: Let the people be  numbered 
1, 2, . . . , k, . . . , n, such that ancestors always precede 
descendants. In the following descriptions subscripts 
will  always refer to people. Let mk denote  the  mother 
of person k, where mk = 0 if the  mother is unspecified 
and is therefore to be taken as an unknown, untyped 
person; otherwise 0 < mk < n. In particular, ml = 0. In 
a similar way& denotes  the  father of k.  Sometimes the 
alternate  notation m(k) or f(k) will be used to avoid 
double subscripts. A pair of ordered sets H = ((  ml, . . .) , 
(fi, . . .)) defines a pedigree. 

Alleles and allelefrequencies: Let p ,  q, . . . be names for 
the discrete alleles observed in any person, and p,  q, 
. . . be their respective frequencies of occurrence. All 
alleles never observed can be lumped  together under 
the single name z, so that p + q + - - + z = 1. 

Ordered  genotypes: It will be useful to think of ordered 
genotypes rather  than  just genotypes, so for purposes 
of describing the algorithm pq will mean that p and q 
are  the maternally and paternally contributed alleles, 
respectively. As ordered genotypes, pq and qp each have 
frequency pq in the  population. 

Ordered  genotype assignments: We  will also need  to con- 
sider assignments of ordered genotypes to the first k 
people, written G = (C; ,  G, . . . , Gk), where each Gi = 
gilti, meaning  that  the ith person is considered to have 
inherited gi maternally and hi paternally. Let e (  G) = k 
be  the  length of G. Let G + gh be (C;, G, . . . , G, gh), 
i.e., like  Gwith the  addition of an e( G) +lst person with 
the  ordered genotype gh. 

Phenotypic data: For some people  there  are  pheno- 
typic  typing  results.  Write E = (El, l$, . . . , E,) for the 
set of phenotypes, where Ek is the phenotype for person 
k. Phenotypes can be written pq or p or the special 
symbol 4 meaning  that Ek  is untyped. Since the relevant 

fact about a phenotype is the genotypes that would 
manifest as that  phenotype, we can think of pq as an 
abbreviation for [pq, q p }  and t#~ as abbreviating [pp, pq, 
. . . , qp, . . . , zz). That way it makes sense to say p q  E 
pq or pq E 4. If G, E E, for i = 1,  . . . , [(G), then we 
will  say G is compatible with  E. 

Recursive algorithm: Now consider the probability 
P(ElH, G) defined as  follows. G is an assignment of 
ordered genotypes to the first e (  G) = k people, and G 
is compatible with  E.  P(El  H, G) means that given the 
pedigree H and assuming a genotype assignment G 
specified for  the first k people, what is the probability 
to observe the evidence E? 

If k = n, HE1 H,G] = 1. 

If k < n, qElH,G) 

= C g , h T m ( k + l ) ( g l  G)T/(f(k+l)(hl G)P(EIH, G + (5) 

where the sum is taken over  all  possible ordered geno- 
types gh E Ek+l,  and T represents the transmission prob- 
abilities of the genes g and h from the  mother  and 
father of the  k+lst person. Specifically, if j>O then 
Tj(gl G) is 0,  '/*, or 1 according as has 0,1,  or 2 copies 
of the  gene g. And 

dg1 G) = g, (6) 

meaning  that  an unknown parent contributes g ac- 
cording  to  the frequency of g in the world. 

Putting k = 0,  P(EIH,G} = P(ElH), 

which gives either X or Y depending  on  whether H i s  
Ho or HI. Then the likelihood ratio is X /  Y. 

Comments on the recursive formula: So the crux of 
the algorithm is recursive evaluation of the Formula 5. 

Tree trimming: There  are a few obvious steps to take 
to make the evaluation of (5) more efficient. 

First, before recursion begins the phenotypes E are 
analyzed.  Each person's phenotype Ek  is written as a list 
of ordered genotypes. Then a backward  pass is made 
through  the relationships, from youngest person to old- 
est, and all ordered genotypes are removed that  are 
incompatible with the relationships. 

For example, if a child has phenotype pq and the 
mother is pr, then  the list  of  possible child ordered 
genotypes is trimmed from {pq,  qp} to  just {pq), a poten- 
tial 50% reduction in evaluation steps. In the  other 
direction, if the  father of the same child is untyped, 
instead of considering all  possible ordered genotypes 
for the  father it will be enough  to consider those with 
a q. If for example the possible  alleles are p ,  q, r, and 
z, the  number of  possibilities is thus  reduced from 16 
to seven.  Notice that most  of this reduction is recog- 
nized only because the genotypes are  ordered  (mater- 
nal contribution distinguished from paternal). Facilita- 
tion of tree-trimming is the main reason to deal with 
ordered genotypes. 

It may happen  that  another backward  pass will turn 
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up  additional savings. Since the effort for each such 
pass is small and the benefit may be  enormous,  the 
trimming step is repeated  until it has no  further effect. 
The search reduction from this analysis can easily be 

Second,  during  the recursive evaluation of ( 5 ) ,  the 
list  of pairs gh,  over  which the summation occurs, is 
further limited by this rule: since there is no point in 
evaluating any flEl H, G + gh) that will have a coefficient 
of 0, only those gand h for which r > 0 are considered. 

Pedigree factoring: Sometimes the pedigree H consists 
of disjoint pieces, that is, the  set of people can be parti- 
tioned  into two or more sets  with no interrelationships. 
This is normally the case under the alternative hypothe- 
sis, where typically the child, mother,  and  her relatives 
form one set, while the man and his  relatives are pre- 
sumed to  be  an  unrelated set. 

The probability for the  entire pedigree is then calcu- 
lated as the  product of the probabilities for each of the 
independent pieces. If the  number of combinations to 
inspect is u and w for  the two pieces, then  the total 
computation time will be only proportional to u + w 
instead of to uw. Since u and w may be large numbers, 
the improvement seems well worthwhile. In practice, 
though, since there  are two scenarios to evaluate and 
only one of them can be factored,  the likely benefit is 
nearly 50%”useful,  but  not spectacular. 

Symbolic evaluation: Evaluation  of ( 5 )  consists  only  of 
adding and multiplying.  Since each coefficient I- is ei- 
ther  a  constant or 1)  or an allele frequency, each 
f l E J H  is a polynomial in the allele frequencies. This 
simple observation suggests doing  the evaluation sym- 
bolically, adding and multiplying polynomials where 
the allele frequencies  are letters, instead of arithmeti- 
cally. The symbolic operations of course take longer, 
but almost only by a  constant f a ~ t o r . ~  Moreover, that 
constant is only about five, a small penalty thanks to 
the fact that  the multiplications are all  of a particularly 
simple kind: a polynomial times a monomial. No  cross 
products arise. And the benefits are considerable; the 
symbolic program is much  more interesting. The for- 
mula gives more information and has many  uses. 

1000-fold. 

DISCUSSION 

Examples: The examples in this section are all  calcu- 
lated by the Kinship Program. First are two typical prac- 
tical problems. 

Inheritance  problem: Arthur and Beatrice have  dif- 
ferent  (dead) mothers. Arthur claims to be  the sole 
child and  heir of  his dead  father,  but Beatrice believes 
she had  the same father.  She hopes to quantify the 
evidence of common alleles between herself and Arthur 
to establish her right to share  the  inheritance. 

’Because the  tree depth is not  increased, only the time to visit 
each node. To be precise, the visit time is not strictly independent 
of the size of the polynomial, but grows  very  slowly, 

Suppose that Beatrice is right. Half-siblings figure to 
share no alleles in up to half  of genetic systems (if the 
systems are highly polymorphic).  In  a genetic system 
where they  have no similar alleles, the evidence is mod- 
estly against relationship. The likelihood ratio is %. In 
most of the  remaining systems the  sharing  pattern will 
be p, ps and the likelihood ratio in  favor  of  half-sibship 
is + 1/(8p). 

There is a subtle point to observe in applying these 
formulas. It is important to use a realistic estimate for 
the frequency p, not  a conservative one as  is the custom 
in paternity work. In  a simple paternity case, paternity 
can eventually be proven by using sufficiently  many 
markers even if the  true evidentiary strength of each 
marker is squandered by using conservative allele fre- 
quency estimates. But accumulating the evidence in a 
case  like this is like running  up a down escalator. With 
every other system  relentlessly chopping  the likelihood 
ratio in half, the forward steps must be efficient lest 
there be no progress at all. 

For example, suppose there are five  systems  with no 
shared alleles and five  systems where an allele with fre- 
quency 0.05 is shared. Then the correct overall  likeli- 
hood ratio is (1/2)5(1/2 + 5 / 2 ) 5  = ( 3 / 2 ) 5  = 8, substantial 
evidence for Beatrice’s point of  view.  But  if the allele 
frequencies were “generously” estimated as 0.1, the 
overall likelihood ratio would be estimated as (‘/2)5(1/2 

+ 5/4)5 = (7/8)5 = 0.5, unfairly  favoring Arthur. 
Another  half-sibling  problem: Three men are  either 

brothers or half-brothers. They all  have a common 
mother,  but  there  are two fathers. The middle man, 
Milton, is a full brother  either with the eldest, Ebenezer, 
or with the youngest, Yancy, but Ebenezer and Yancy 
have different fathers. DNA testing is done  on Ebe- 
nezer, Milton, and Yancy to decide who  Milton’s father 
was. 

In  three different loci, the  sharing  patterns for the 
three men are as  follows: 

Ebenezer Milton Yancy 

Locus 1 pq 4T 4s 
Locus 2 p q  p. S 

Locus 3 p q  qs Pr 

For the first locus the likelihood ratio is 1, since the 
pattern of genotypes is symmetrical about Milton. 

At locus two, only Ebenezer and Milton share  an al- 
lele. Superficially this suggests nominating  them as the 
full-brother pair, but  the likelihood ratio again is unity. 
A combinatorial argument shows  why: the p must be 
maternal,  for otherwise the  mother would  have  passed 
three different alleles to the  three sons. Consequently, 
there is no evidence either way about fathers. 

Locus three suggests that Milton is more likely to be 
Ebenezer’s brother, since they might share  a  paternal 
q allele. How much  more likely? The answer from the 
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FIGURE 4.-An incest 
case.  Son is Daughter’s half- 
brother.  Son’s father is one 
of Daughter’s  grandfathers. 
But which grandfather? 

Ho Incest 9 Not Incest 
I I 

Kinship Program is 1 + 1/(2p + 2q). If p and q are 
both  rare,  the evidence is quite  strong. 

An incest  case: Figure 4 shows a complicated incest 
case, the discussion  of  which will give a fair flavor of 
the workings  of the program. 

As illustrated by the  diagram,  Mother has two chil- 
dren.  The father of the first child,  Daughter, is the  dead 
man called Father. The father of the  second  child,  Son, 
is one or the  other of Daughter’s grandfathers. The 
problem is to decide which grandfather.  Genetic types 
are available just for  Mother,  Son, and Daughter. 

The two scenarios to be  compared are described to 
the program in the following notation: 

Daughter pq : Mother pr + Father 

The : separates the child’s name from her parents. The 
parents are separated by +. Lowercase letters, e.g., pq, 
optionally following a  name are  the  phenotype of that 
person. 

Son pr : Mother + MothersFather/FathersFather 

The / separates two possibilities for  a person. Son’s 
father is MothersFather under  one scenario and Fa- 
thenFather  under  the  other scenario. 

Mother : ? + MothersFather 

Mother’s parents are  here defined  to be  an unknown 
person (?) and MothersFather. 

Father : ? + FathersFather 

Father’s parents  are  a  different unknown person and 
FathersFather. 

On initial analysis, there  are  four alleles to consider 
( p ,  q, r, and z ) .  Therefore  there  are  16 possible ordered 
genotypes for each of the untyped people,  Father, 
MothersFather, and FathersFather, and two possibilities 
for each of Mother, Daughter, and Son. That amounts 
to -65,000  full length  combinations  for G to consider. 
Tree-trimming reduces this number to -8000, and in 
the end  the  number of evaluations of ( 5 )  is -900. 

The variable z is undesirable because it has no mean- 
ing  to  the user. Besides, it is unnecessary. It  can  be 
eliminated using the relation z = 1 - p - q - * * * . 
Elimination of z produces  a  great simplification, reduc- 
ing X from 20 terms to  three  and Y from 16  to two. It 

is not clear why the disparity should be so great, nor 
even why the z-less form is the  simpler, but typically it 
is so. 

The final answer, after removing common factors 
from numerator  and  denominator, is (2 + 2p + 2r)/ 

More avuncular indices: Armed with the  general al- 
gorithm, we can delve further  into  the  situation  where 
one or more siblings of the alleged father  are tested. 
Suppose as before  that  mother is p and child is pq. 
Table 1 shows the paternity index  for  a variety of combi- 
nations of genotypes and numbers of  siblings. Of course 
there  are  patterns  to  the  formulae,  but  apparently  there 
is no simple rule  to  combine multiple uncles and aunts 
in the way that  there is for ancestors. 

The next two examples explore  published results. 
Twins: For twins to have the same genotype pq is 

evidence that they are monozygotic rather  than dizy- 
gotic. Were the parents known to  be pr and qs, the 
likelihood ratio would be exactly four. However, in the 
absence of typing the  parents  the possibility that one 
or both  parents are homozygous reduces  the  likelihood 
ratio somewhat. The Kinship Program gives the  formula 
4/(1 + p + q + 2pq) when the  parents are  not typed 
and  the twins are heterozygous pq. In  a system for which 
the twins are homozygous qq, the likelihood ratio is 4/ 
(1 + q)2. The latter  formula especially is not difficult to 
verify by hand  and is also  given in VOGEL and MOTULSKY 
(1986, p. 671). AKANE et al. (1991), on  the  other  hand, 
gave different formulas for these situations. 

The question of determination of  zygosity  of  twins 
occurs frequently. Most often the reason is that one 
twin has leukemia and needs  a bone marrow transplant. 
If the  genetic match is perfect, then  the  recipient  can 
be spared  the risk  of immunosuppressants. Since there 
is little theoretical benefit in typing the parents and 
neither leukemia nor twinship is particularly rare,  the 
problem probably arises dozens of times per year. 

Silent  alleles and paternity  cases: Among many possi- 
ble enhancements  to  the  program,  a  quite easy one was 
the inclusion of silent alleles. From the  point of view 
of the kernel  program this meant only adding  more 
possible ordered genotypes corresponding to the ho- 
mozygous phenotypes: p is  now (&by Po, op) where o is 
the  silent allele. 

(3p + 3r). 
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TABLE 1 

Two singly Unite  and one doubly infinite  family of avuncular indices, where  the  paternal contribution is 9 
~ ~ ~ 

No. of pq No. of 99 siblings  of  alleged father 
siblings of 

alleged  father 0 1 2 3  4 

0 1 1 1  1  1  1 2 1  4 - + -  
2q 2 2q 1 + q  2q 1 + 3q 2q 1 + 7q 

-+-  -+- -+- 
1  (1/4g)(l + 2q) 1 1/2 1  1 1 2 1  4 

2 (1/4q)(1 + 3q - 2$(1 + 3p))  1 1 1 2 1  4 1 

-+ -  -+- -+- -+- 
2q 1 + 15q 2q l + q  2q 1 + 3q 2q 1 + 7q 

- +  8 

l + P + q + W  2q 1 + p + 3 q   % + l + p + 7 q  2q l + p + 1 5 q   % + 1 + p + 3 1 q  
- +  

3  (1/4q)(l + 5q - 12971 + 5P))  + 2 1  4  1 8 1 16 
1 + 3p + 3q + 12pq 2g 1 + 3p+ 7q 5’ 1 + 3p+ 15q 5’ 1 + 3p+ 31q 29’ 1 + 3p+ 63q 

As an  application, Table 2 covers  all patterns of 
shared alleles, includes the case where the  mother is 
not typed, and gives the  formula  both when silent alleles 
are  considered possible and when not. 

The last part of Table 2 covers the cases  with an un- 
typed mother. BRENNER (1993) lists the motherless for- 
mulas for  codominant systems, and  the  computer con- 
firms these simple formulas. CHAKRABORTY et al. (1994) 
give formulas for the motherless case and silent alleles. 
In  the first five  of  six  cases the Kinship Program agrees. 
In the last  case (the so-called “indirect exclusion,” a q 
child and r man) they  gave o being the frequency 
of silent alleles, not a plausible formula since it says that 

the more rare is the silent allele, the more likely are 
father  and child to have it. LUQUE and VALVERDE (1996) 
have  also made this point. 

Limitations: The  program as described is general  but 
does have some restrictions. The genetic systems must 
be  codominant, or at most to have a silent allele. On 
the face of it this restriction could easily be removed: 
any autosomal genetic system can be set up by having 
a table containing genotype lists that  correspond to 
each possible phenotype. Such a scheme would encom- 
pass Rh or MNSs, but  not two loci of HLA unless recom- 
bination were ignored. 

The present version presumes that all allele frequen- 

TABLE 2 

Likelihood ratios for various paternity situations 
~~ 

Likelihood  ratio  for  paternity vs. nonpaternity 

Child  Mother  Tested  man  Codominant  system  With  silent  allele o 

9 P9 9 1/q l/q’ 
9 P 9 impossible (q’”’ ’ ) /q  
P9 P or@ 9 1/q ( q l / q l ‘ ) / q  
9 9 9 1/q w q r  - 0 3 / q ’ ( q  + 30)) 
P9 P or@ 97 1/24 
9 P 97 impossible 1/2q 
9 P9 97 1/2q 1/2q‘ 
9 9 97 1/2q 1/2(q’ - d/q? 
P9 P9 P9 1(/P + q )  
Pn Pa 9 1/(P + 4 )  ( q r / q r r ) / ( p  + q )  
P9 P9 97 1/(2P + 2q) 
9 P9 r 0 o / q ’ S  
9 4 r 0 0/(q1Y + oqt”/q’) 
9 P r impossible 0 
9 Mother  not  tested 9 1/q (1 + o ( l  - o / q ” ) / q ) / q ”  
P9 Mother not tested 9 1/29 (qf/q‘‘)/2q 
9 Mother  not  tested 97 1/2q (q’/q”)/2q 
P9 Mother  not  tested P9 (P + q)/4Pq 
P9 Mother  not  tested Pr 1/44 
4 Mother  not  tested r 0 o/ q”S 

If the  possibility  of  an undetected  allele  changes  the  formula,  the  more  general  form is listed in the  silent  allele  column, 
using  abbreviations q’ = q + 0, q“ = q + 20, T“ = r + 20, where o is the  frequency of  the  silent  allele. 
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cies are from the same race. Allowing  various  races pres- 
ents no difficulty in principle; it would  affect  only (6). 
Instead of a single symbol 0 to  denote  an untyped ances- 
tor,  there  need to be 0, 0’, O”, etc. for the various 
races. Then, additional symbols g‘, g, etc. would be 
introduced  for allele frequencies of  the  extra races, 
where T0,(g) = g’, etc. 

A few more restrictions are incidental to the  kernel 
of the program and are only limitations of the Kinship 
input language through which the user describes the 
scenarios. For example, it might be more convenient 
if the program allowed comparison of more  than two 
scenarios at  once,  although this is no limitation in prin- 
ciple because the scenarios can always be  compared 
pairwise. The  input description language necessitates 
that  both scenarios include  the same set of children. To 
describe the mono-/dizygotic twin scenarios therefore 
requires an artifice or “programming trick.” 

Alleles must be discrete. With restriction fragment 
length polymorphism systems, where the reality is a col- 
lection of  sizes none of  which match exactly, the user 
has to decide which measurements represent identical 
alleles and which do not.  In practice this is acceptable, 
but it would not be prohibitively hard to write a  more 
general program that could deal with continuous allele 
measurements and measurement error,  nor would such 
a program necessarily be very  slow to run. 

Conclusions: One motive for writing the Kinship 
Program is that working out these problems by hand is 
very prone to error, as is shown by published errors.4 
The program is interesting and useful because it gives 
clear and correct answers. The benefits of this include 
the following. 

If the result is to be  presented in an adversarial setting 
(in  court), the formula can be given  as justification for 
the calculation. Since the formula could perhaps  be 
doubted as  well  as a  number this justification at first 
sounds a bit circular, but in practice it is very helpful 
to be provided with this intermediate result. Typically, 
the formula can confidently be verified by hand even 
if deriving it de nouo would be very chancy. 

The formulas can be  instructive, surprising, and reveal- 
ing. The idea that realistic rather than conservative  allele 
frequencies are necessary for half-sibling (and many 
other) cases  is one example that is apparent from consid- 
eration of the formulas but previously  escaped attention. 

Such rules as the simple general formulas for pater- 
nal ancestors and for uncles are  more likely to be appar- 
ent given the relatively abstract point of  view provided 
by symbolic likelihood ratios. The precise scope of these 
rules is hard to characterize. It  depends in part on the 
complexity of the typing  system. For example, consider 

Unedited computer output will gladly be supplied on request for 
any problem discussed in this paper. 

the allele transmission probabilities implied by knowl- 
edge of the  parental types  of an untyped alleged father. 
If the system  is codominant,  then also  typing the alleged 
father’s uncle would change  nothing, whereas for a 
more complicated system, such as AB0 or Rh, typing 
the uncle adds information. The complexity  of the rela- 
tionships also bears on the applicability of the rules. 
On its  face Equation 1 depends  on  the  independence 
between maternal and  paternal transmission probabili- 
ties; nonetheless in practice rule (2) holds even for 
some examples where mother  and alleged father  are 
related (while failing for similar examples). Also, there 
is interplay between the complexity of the genetic sys- 
tem and  the  degree to which the  paternal ancestor or 
avuncular rule are  tolerant of such relationships. 

The static “transmission probability” approach con- 
trasts  with the recursive algorithm (or “combinatorial 
approach”)  embodied by the Kinship Program. The 
latter  approach is necessary in general,  but  the princi- 
ple underlying the  former, which is embodied in the 
rules (2) and ( 3 ) ,  applies in parts even  to problems to 
which it does not provide a complete solution. Espe- 
cially (3) is conservative of formula complexity, in that 
it creates no new terms when applied to a ratio of poly- 
nomials. Thus  the principle represents an effective  re- 
duction that is one reason that  the formula for even a 
large problem may  well be simple. 
Thanks  to M. MCCINNISS and J. THOMAS for providing interesting 
examples. I am especially indebted to B. WEIR for  invaluable  advice 
and encouragement in preparing this paper. 
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